摘要

针对传统机械故障诊断方法难以解决人工提取不确定性的问题,提出了大量深度学习的特征提取方法,极大地推动了机械故障诊断的发展。作为深度学习的典型代表,卷积神经网络(CNN)在图像分类、目标检测、图像语义分割等领域都取得了重大的发展,在机械故障诊断领域也有大量文献发表。为了进一步了解利用CNN的方法进行机械故障诊断的问题,首先简单介绍了CNN的相关理论,然后从数据输入类型、迁移学习、预测等方面对CNN在机械故障诊断中的应用进行了归纳总结,最后展望了CNN及其在机械故障诊断应用中的发展方向。