摘要

针对传统算法在求解多目标函数上存在局限性问题,在标准多目标布谷鸟搜索(Multi-objective Cuckoo Search,MOCS)算法的基础上,采用Kent混沌映射生成多样性初始解,并自适应改变算法的搜索步长,结合多目标Pareto最优解概念,提出一种混沌自适应多目标布谷鸟搜索(Chaotic Adaptive Multi-objective Cuckoo Search,CAMOCS)算法,并利用该算法对所建立的多目标无功优化模型进行求解,最后在IEEE 14节点系统算例仿真验证了所提方法的有效性和可行性。