摘要

针对传统指纹定位算法在离线阶段采集样本工作量较大的问题,该文利用一种分区拟合值近似法(P-FP)来建立离线指纹库。为了解决在线阶段由于WiFi信号的波动导致的定位精度较低的问题,提出一种基于P-FP的设定阈值的序贯重要性采样(SIR)粒子滤波算法(PS-FP)来优化定位坐标。首先建立了路径的损耗模型,并对室内停车场进行分区拟合,得到每个分区的环境系数;然后用拟合值与实际测量值的差值来建立误差特性矩阵,并重新部署虚拟的参考节点(RP);最后对离线指纹库进行C均值聚类。通过比较平均定位误差(MLE)寻找PS-FP算法的最优阈值,并采用PS-FP算法来优化在线定位坐标。实验结果表明,在部署很少的RP即获取样本比较少的条件下,PS-FP算法依然能达到较高的定位精度,其平均定位误差约为0.7 m。累积分布函数(CDF)的分析结果表明,采用PS-FP算法在2 m以内的定位误差能达到98%。

  • 单位
    国网四川省电力公司电力科学研究院; 西华大学