摘要
针对白细胞识别模型的部署受到参数数量和计算的限制,导致白细胞识别准确率较低和模型泛化能力较差等问题,提出了一种基于改进EfficientNet的轻量高效的白细胞图像识别模型。首先,减少主要模块堆叠减少模型参数量,同时添加特征层间的跳跃连接保证信息的传递;其次,用改进的有效通道注意力和DropBlock2D对主要模块进行调整,使模型捕获更多通道和细节的特征信息,以提升模型的准确率和泛化能力;最后,使用带有标签平滑的交叉熵损失函数对模型进行训练,加快模型的收敛,以进一步提高模型的泛化能力。实验结果表明,改进后模型的参数量为2.49 M,较改进前减少了1.11 M,降低了模型复杂度,在混合数据集上达到了99.67%的准确率,较改进前提高了0.37%,在公共数据集BCCD2上达到了100%的准确率,高于现有的白细胞识别模型的准确率,验证了该模型在保持轻量级计算的基础上,具有较高的准确率和良好的泛化能力。
- 单位