摘要

目的心提出一种数据冗余信息引导的低剂量心肌灌注CT成像方法。方法考虑到心肌灌注CT图像帧内含有丰富的结构冗余性,且帧间具有高度的相似性,本文提出基于非局部均值滤波(NLM)和全变分(TV)混合框架的惩罚加权最小二乘(PWLS)图像重建模型,简称为PWLS-avi NLM-TV。该模型利用了帧间结构相似性和帧内数据冗余性,能有效消除重建图像中的噪声和伪影,提高灌注序列图像帧内空间分辨率与帧间时间分辨率。结果 PWLS-avi NLM-TV相比PWLS-TV和PWLSavi NLM能更好地去除心肌灌注图像中的噪声和伪影,同时较好保持图像边缘和细节信息,进而有效区分缺血心肌与正常心肌。结论数据冗余信息引导的重建算法可有效改善低剂量心肌灌注CT成像质量,更好地为临床影像诊断服务。