摘要
为实现大米品种的准确鉴别,提出一种基于太赫兹时域光谱(Terahertz Time-Domain Spectroscopy, THzTDS)技术的大米品种识别方法。利用标准差(Standard Deviation, SD)和区间偏最小二乘(Interval Partial Least Square, iPLS)选取0.53~1.21 THz波段的吸收光谱信息作为分类模型的输入数据,再采用决策树模型(Decision Tree, DT)对四种大米吸收光谱进行分类识别,并在模型训练过程中结合网格搜索算法寻找模型最优参数。为增加实验对比度,分别使用逻辑回归模型和支持向量机模型进行对比实验,其模型分类准确率分别为80.75%和88.75%。实验结果表明,太赫兹时域光谱技术结合SD、iPLS和DT方法可以实现大米品种的准确识别,准确率可达95%,为农产品品种识别提供了一种新的鉴别方法。
- 单位