摘要

为了提高基于标签的个性化推荐技术的准确率,提出了一种基于共同属性和标签共现的标签消歧模型,对已有的基于聚类的标签消歧算法进行改进,针对不同的标签语义问题分别采用不同的方法,缓解了原算法不能识别不同语义的问题。对于多义词语义问题,使用同义词模型进行消歧;对于近义词、同义词语义问题,使用近、同义词模型进行消歧,并将该模型应用于个性化推荐算法。利用公共数据集MovieLens Latest Datasets进行了个性化推荐实验。实验表明,当用户推荐项目数量递增时,推荐算法的准确率和召回率都有提高,能有效消除标签中存在的歧义。

  • 单位
    解放军理工大学