摘要
为提高车道线检测的实时性与准确性,在机器学习的框架下,提出了一种基于改进的YOLOv5s模型检测方法。该方法在图像预处理后增加了一个二值化通道与原图像一起更新数据集;为了高效提取车道线特征,加入anchor-free改进其锚框问题;为节省GPU内存、增强机器对目标的识别能力,采用mixup与mosaic结合的方式增强数据;为加快收敛速度和提高识别准确率,将损失函数改进为EIOU。实验结果表明,所提检测算法能够实现较为准确的车道线检测,实时性和准确性比YOLOv3的高很多,mAP增加了约30%,与YOLOv5s相比,其mAP约增加了11%,且改进方法具有良好的鲁棒性。
- 单位