摘要
高精度短期负荷预测是配电网运行态势感知的基础。为了充分挖掘电力负荷中的复杂不确定信息,提出了一种融合二次混合模态分解和基于飞蛾扑火优化(MFO)算法的长短时记忆神经网络(LSTM)的短期负荷预测方法。首先,将集成经验模态分解(EEMD)和变分模态分解(VMD)相结合,提取负荷中相对稳定的子序列及趋势序列,以降低高频序列中无序不确定性对预测精度的影响;然后,引入基于MFO参数寻优的LSTM预测模型,进而利用LSTM-MFO算法实现对含各子序列短期负荷变化趋势的精确预测。最后,采用某实际配电网节点负荷序列,验证了所提方法的泛化能力和预测精度。
-
单位国网上海市电力公司; 上海电力大学