基于Sentinel-2A NDVI时间序列数据的冬小麦识别

作者:甄晓菊; 张雪红*; 吴国明; 傅晓艺; 何泱; 洪长桥
来源:江苏农业科学, 2019, 47(16): 239-245.
DOI:10.15889/j.issn.1002-1302.2019.16.053

摘要

鉴于农作物类型识别中存在严重的"异物同谱"效应,基于归一化植被指数(normalized difference vegetation index,简称NDVI)时间序列数据及物候特征的农作物遥感识别已成为热点。针对现阶段NDVI时间序列数据空间分辨率普遍较低的问题,以河北省辛集市为研究区,基于Sentinel-2A数据构建了10 m高空间分辨率NDVI时间序列,并提出了积分法、斜率法和决策树法3种冬小麦识别模型,同时与传统的光谱角质图(spectral angle mapper,简称SAM)法进行了比较。结果表明,以上方法均达到了较好的识别效果,其中积分法、斜率法和决策树法的总体精度均优于97.6%,而SAM法因仅仅考虑了时间序列曲线的形态,使得稀疏林地与冬小麦之间容易误分;Sentinel-2A卫星(Sentinel-2星座重访周期为5 d)提供的高时空分辨率时间序列数据,在农作物的季相节律特征提取以及农作物的识别中具有巨大潜力。

全文