摘要

利用深度学习中的卷积神经网络理论,基于单目视觉系统和带有标识物的航天器影像,实现对航天器的三维姿态角、距拍摄点距离和相对拍摄中心偏移量的精准测量。利用机器学习理论实现网络自主学习样本特征,这一方式将大幅降低动态测量的误差。同时,这种测量方式也避免了人工提取特征的复杂过程,实现任意、精准、快速测量,对航天器在组装及发射过程中的姿态估计、距离测算起到关键性作用。