摘要

番茄图像中多类别目标的准确识别是实现自动化采摘的技术前提,针对现有网络分割精度低、模型参数多的问题,提出一种基于改进DeepLabv3+的番茄图像多类别分割方法。该方法使用幻象网络(GhostNet)和坐标注意力模块(Coordinate attention, CA)构建CA-GhostNet作为DeepLabv3+的主干特征提取网络,减少网络的参数量并提高模型的分割精度,并设计了一种多分支解码结构,用于提高模型对小目标类别的分割能力。在此基础上,基于单、双目小样本数据集使用合成数据集的权值参数进行迁移训练,对果实、主干、侧枝、吊线等8个语义类别进行分割。结果表明,改进的DeepLabv3+模型在单目数据集上的平均交并比(MIoU)和平均像素准确率(MPA)分别为68.64%、78.59%,在双目数据集上的MIoU和MPA分别达到73.00%、80.59%。此外,所提模型内存占用量仅为18.5 MB,单幅图像推理时间为55 ms,与基线模型相比,在单、双目数据集上的MIoU分别提升6.40、6.98个百分点,与HRNet、UNet、PSPNet相比,内存占用量压缩82%、79%、88%。该研究可为番茄采摘机器人的智能采摘和安全作业提供参考。