摘要
以EOF分解方法为基础,把AR模型和Kalman滤波方法相结合,建立了海表温度的预报模型。首先对历史时间序列资料进行EOF分解,在此基础上,利用时间权重系数建立AR(2)模型,并对此模型参数进行了改进,作为Kalman滤波的状态方程。然后用Kalman滤波方法对时间权重系数进行了滤波预测,并引入集合预报的思想对SST预测结果进行了重构,并与实况资料进行了相关性分析。以太平洋、印度洋、大西洋三大洋的热带海域为个例进行了预测试验。试验结果表明,预测效果较好,相关系数平均达到了98%以上,而残差方差在0.5以内。
-
单位中国人民解放军陆军工程大学