摘要

为提高代理模型效率,对数据进行聚类,根据模型构建的需求从聚类结果中选择少量数据训练模型参数,得到一种基于聚类的代理模型构建策略。以该策略构建的代理模型作为近似评价模型,设计一种基于聚类的代理模型辅助粒子群优化算法,提出一种以代理模型辅助迭代搜索作为加速策略的混合变量多目标进化算法。数值实验结果表明,基于聚类的代理模型构建策略具有时间复杂度低、模型构造效率高的优点,模型辅助的迭代搜索过程具有较好的全局探索和局部开发能力。

全文