摘要

基于点云局部特征描述的三维目标识别是机器人视觉领域一个具有重要研究价值且富有挑战性的研究方向。尽管目前已有大量三维特征描述子的相关研究工作,但它们大多数采用浮点数,对计算和存储的开销很大,并且鉴别力较弱,鲁棒性不强。鉴于此,从点对特征出发,提出一种鉴别力高,鲁棒性强,结构紧凑,计算迅速的高性能点云局部描述算法—二进制点对特征直方图(Binarized histogram of point pair features, B-HPPF)。对模型进行降采样,根据点位置与点法线信息,计算局部邻域中点对的七个特征;利用其将局部点对集划分为若干区域,并对每一区域进行信息提取;通过轮换比较各信息量的大小将特征进行二进制编码;将每一区域的二进制子特征串联组合生成最终的二进制描述子B-HPPF。所提出的B-HPPF描述子在多个公开数据集上进行测试,并与经典的描述算法进行对比,结果表明,所提出的方法在鉴别力、鲁棒性、紧凑性和计算效率等方面获得了优越的综合性能。此外,B-HPPF的实用性也在目标识别数据集上得以进一步验证。