摘要

负荷聚类是电力大数据分析的重要基础。针对高维日负荷数据时序特征提取困难,以及特征提取与聚类处理分离降低负荷聚类准确性的问题,文章提出了一种基于一维卷积自编码器的日负荷深度嵌入聚类方法(deep embedding clustering method based on one dimensional convolutional auto-encoder,DEC-1D-CAE)。首先,采用一维卷积自编码器网络提取负荷曲线蕴含的时序特征。然后,利用自定义聚类层对所提取的负荷特征向量进行软划分。最后,采用KL散度(Kullback-Leibler divergence,KLD)为损失函数,联合优化卷积自编码器与聚类层,得到聚类结果。算例分析表明所提方法在DBI(Davies-Bouldin index)、CHI(Calinski-Harabasz index)指标上均优于K-means、1D-CAE+K-means、基于堆叠式编码器的深度嵌入聚类方法(deep embedding clustering method based on stacked auto-encoder,DEC-SAE),所提方法可以有效提升日负荷聚类的准确性。