摘要

为了提高短时交通流速度预测的精度,提出一种基于改进天牛须算法优化的确定性跳跃循环状态网络的交通流预测模型。首先对交通流速度序列进行浑沌性分析,重构序列的相空间,将对交通流速度序列的研究映射到其所在的相空间中进行;然后引入变步长因子和模拟退火技术对天牛须算法(beetle antennae search, BAS)进行改进,并以改进算法优化确定性跳跃循环状态网络(cycle reservoir with regular jumps, CRJ)的参数构建预测模型;最后通过实例对比分析模型的有效性。结果表明:通过相空间重构对交通流速度序列处理,能够挖掘序列内部的动态特性,使之更加适用于网络的建模;所提模型的预测结果同对比模型相比,平均绝对百分比误差下降了1.05%~6.04%,有效地提高了短时交通流速度的预测精度。