摘要
迷彩伪装通过设计颜色和纹理图案来破坏目标的固有形状,其检测依赖的视觉特征应与常规目标不同。然而卷积神经网络的黑盒性质使得不同视觉特征对模型识别的贡献程度无法获知。为解决上述问题,借鉴人类视觉系统设计了一种适用于伪装场景的视觉特征解耦方法,解耦并分析目标检测模型在颜色、纹理和形状特征上的偏好程度。具体来说,使用消除单一特征并保留其余特征的解耦框架,以模型的性能下降情况作为偏向性的衡量标准,通过灰度化处理消除图像的颜色特征,使用区域置乱破坏目标的纹理特征,对目标轮廓取内接形状以改变目标的形状特征。在公开的迷彩伪装人员数据集和常规人员检测数据集上分别进行实验,结果显示,迷彩伪装目标的检测主要依赖纹理,常规目标的检测主要依赖形状。
-
单位中国人民解放军陆军炮兵防空兵学院; 中国人民解放军陆军工程大学