摘要

太阳黑子是太阳光球层中带有较强磁场的区域,通常是太阳爆发活动的源区。Wilson山磁分类是当前最为主流的太阳黑子分类方法之一,对研究太阳爆发有重要意义。利用2010-2017年间SDO/HMI成像仪观测到的720s_SHARP磁图和白光图数据,研究使用深度学习对太阳黑子群Wilson山磁分类的方法。实验结果表明,Xception网络在识别太阳黑子Wilson山磁类型上能取得最优的效果,其中对α类型黑子的F1得分为96.50%,β类为93.20%,其他类型的黑子为84.65%。