摘要

针对混沌粒子群算法中存在的盲目搜索问题,提出基于动态混沌扰动的粒子群优化算法。对标准粒子群优化引入动态混沌扰动,在最优值改变时进行较小扰动,在多次不变时进行动态扰动范围的混沌扰动,减少混沌粒子群算法中存在的盲目搜索,提高搜索速度和效率,使有限的时间用在最有效的搜索上。将该算法应用到K均值算法中,可以克服K均值算法的局部最优和对初值和孤立点敏感的缺点,使K均值算法得到全局最优解。通过仿真实验证实该算法的高效性和稳定性。