摘要
建筑物变形监测数据中存在着随机干扰和不确定性因素,而单一的数学模型预测结果精度较低,制约了变形预测的准确性。针对这一问题,文中采用了一种自适应Kalman滤波的灰色时序组合预测模型。首先,通过自适应Kalman滤波算法对原始数据进行去噪处理,动态的去除数据内部的随机干扰误差;然后,将灰色模型(GM模型)与时间序列分析模型(AR模型)相结合,得到拟合时间序列中的沉降量趋势项和沉降量随机时间序列剩余项,生成一种非线性组合模型;最后,对变形监测数据进行整理预测,并将该预测模型应用于建筑变形工程实例中,与GM(1,1)预测模型、GM(1,1)-AR预测模型通过平均残差、残差的方差和后验差比值进行对比分析。结果表明:该模型后验差比值可达到0.045 1,所得数据结果明显减小,预测精度显著提高,结果更加准确可靠。
- 单位