针对常用的特征提取方法存在着误差较大,且方法多样难以有效对其进行选取等问题,提出一种基于变分模态分解和卷积神经网络的脱硫增压风机轴承智能诊断故障诊断方法,首先对信号做变分模态分解,以期把信号中不同成分分解到不同的频段节点上;最后对包含有故障信号的不同节点作为卷积神经网络的输入进行自动特征提取,利用分类器对特征进行分类,从而实现脱硫增压风机轴承的故障智能诊断。