摘要
为了通过充分挖掘和分析用户的学习行为规律及认知特点,借助互联网和人工智能技术提升个性化教育的深度和广度,设计了一个包含用户画像的个性化学习资源推荐系统。该系统由数据层、数据分析层和推荐计算层构成。数据层由用户数据以及包含知识资料、学习资料和标签集的资源库组成;数据分析层融合了以基础信息、学习行为等为代表的静态数据和动态数据,据此为用户生成个性化画像、提供直观形象的学习反馈;推荐计算层则通过相似性分析和聚类算法发现用户的学习行为规律,使用TF-IDF方法挖掘用户的资源偏好,并据此给出个性化的学习建议。该系统已应用于一个以人工智能类课程为主的在线教育平台,为师生提供个性化画像、学习反馈与资料推荐的服务,当前处于第二个学期的试用阶段。
- 单位