摘要

法律条文(简称法条)是司法量刑的主要依据,法律条文的精准推荐,能够辅助提高法律智能判决的质量.目前,主流的法条推荐模型是将有限数量的法条当作类别标签,采用分类的思想,根据法律文书的案例描述将其归类到相关的法条.但是法条作为法律规范的文字表述形式,现有的分类方法简单将其作为类别标签的索引编号,导致对其语义信息利用不足,影响了推荐质量.针对此问题,研究将主流的法条推荐方法从分类模型转化为语义匹配模型,提出了基于深度语义匹配的法条推荐方法(DeepLawRec).该方法包含局部语义匹配模块和全局语义推荐模块,分别设计双向Transformer卷积网络模型和基于回归树的推荐模型,在理解文本序列的同时,关注与法条匹配学习相关的局部语义特征,增强法条推荐的准确率和可解释性.在公开数据集上的实验结果表明,DeepLawRec方法在推荐质量上优于传统的文本分类以及经典的语义匹配方法,并进一步探讨了如何分析和判读推荐结果.

全文