精确的电力负荷预测有利于保障电网运行的安全性、稳定性、高效性及经济性.为提高预测精度,采用了一种PSO改进T-S(Takagi-Sugeno)模糊神经网络方法.分析了数据预处理对改善输入量的重要性,讨论了可以让学习率和平滑因子动态调节的改进T-S模糊神经网络算法,从而使PSO找到最优参数,然后结合历史负荷数据、相关影响因素进行预测,以表明改进的T-S模糊神经网络在短期电力负荷中具有更高的控制精度.