摘要

滚动轴承的振动信号具有非平稳、非线性的特点,造成其早期故障信号的特征提取困难,针对这一问题,对滚动轴承状态监测中常用的特征提取方法进行了研究,提出了一种基于多元变分模态分解(MVMD)和分数阶傅里叶变换(FRFT)的特征提取方法,并将其应用于滚动轴承的故障诊断中。利用MVMD算法将多传感器同时采集的多通道振动信号进行了同步分解,有效地提高了多通道数据融合处理能力,同时得到了若干个固有模态函数(IMF)分量;依据相关系数法从分解后得到的IMF分量中选取了包含故障信息最多的分量作为最优分量,利用FRFT对最优分量进行了滤波,降低了噪声对微弱故障信号的干扰;对滤波后的信号进行了1.5维包络谱解调,通过分析滤波后信号的包络谱,提取了滚动轴承的故障特征。研究结果表明:应用MVMD和FRFT相结合的方法能够有效地避免模态混叠现象,充分地利用故障特征信息,削弱低频信号与噪声的干扰,从而有效地提取出了滚动轴承的故障特征信息。