摘要
将集成电路二划分问题转化为等价的一维离散布局问题,在全局布局阶段将问题松弛为连续布局问题,并推导得到一维显式泊松方程.以线长作为目标函数,由泊松方程建立的密度函数作为罚函数,使用非线性优化方法得到全局布局阶段的连续解.在合法化阶段将连续解映射至原问题的离散解空间,得到原问题的可行解.在详细布局阶段使用FM(factorization machines)算法对离散解进行局部优化,得到最终解.上述二划分方法在ISPD98标准测试样例中的表现相较于传统FM算法,割边减少约36%.将上述方法嵌入多级划分框架KaHyPar,割边约减少7%.
- 单位