摘要
相比地震反演方法和技术,基于多属性回归方法的储层预测技术能够缓解分辨率有限、过于模型化等问题,但模型泛化能力不足常造成井间薄储层预测结果不合理。为此,提出基于多层感知机深度学习网络的多属性回归薄储层预测方法,即以地震数据(提供背景信息)、90°相移数据(提供储层结构近似信息)、储层不连续界限属性(提供储层空间分布信息)为输入,以井点高频自然伽马为期望输出,利用多层感知机深度学习网络训练模型,预测井间自然伽马值,利用自然伽马值与砂—泥岩性的高度相关特性刻画薄储层。A油田实际资料测试表明,自然伽马预测值与真实值平均相关系数达到86.4%(训练集,10口井)和85.5%(验证集,两口井),明显优于传统多属性回归方法。应用该方法解释重点层段6套小层,薄储层预测结果与156口井实钻砂岩厚度平均相关系数较相移数据提升约38%,证实该方法应用效果良好。
-
单位中国地质大学(北京); 中海油研究总院有限责任公司