摘要

【目的】通过改进停车泊位预测方法为交通出行提供有益帮助。【方法】利用李雅普指数对停车泊位序列进行分析,指出序列具有混沌特性,可进行多步预测。利用db32小波函数具有双正交性、紧支撑性以及消失矩阶数较大的特征,对归一化的停车泊位序列进行多尺度分解与重构,并作为小波神经网络(Wawelet neural network,WNN)的隐含层函数。为提高预测精度和降低预测时间,分别使用粒子群算法(Particle swarm optimization,PSO)和极限学习机(Extreme learning machine,ELM)来优化WNN。其中,使用PSO对WNN的权值进行调整,逐步迭代得到最优值;使用ELM将全局最优值作为单隐层前馈神经网络的输入,使得算法尽快收敛。优化后的WNN结合迭代多输出法对停车泊位进行预测。将上述预测方案称为极限学习机和粒子群算法双重优化的小波补缀网络多步预测(Multi-step prediction based on wavelet neural networkimproved by extreme learning machine and particale swarm optimization,MP-EPWNN)。【结果】仿真实验表明,相对于BP神经网络、遗传算法优化小波神经网络、极限学习机优化小波神经网络、粒子群优化小波神经网络4种算法,MPEPWNN算法的预测均方误差平均降低了96.6%,预测所需的时间平均降低了65.97%。【结论】MP-EPWNN算法预测停车泊位是有效的。