摘要
针对绝缘子缺陷样本数据缺乏,现有生成方法又要求训练样本的规模庞大,且在生成过程中绝缘子缺陷的细节常常被丢失或扭曲,提出了一种基于局部细粒度信息引导的双循环一致性绝缘子缺陷样本生成方法。该方法利用粗糙绝缘子图像作为网络输入,提出通过循环一致性生成对抗方法向精细缺陷绝缘子样本学习,生成较为逼真的缺陷样本。为使生成的样本具有丰富的缺陷特征,提出将生成图像中的缺陷区域图像作为判别网络的输入,并利用对抗约束的方式引导生成网络重点关注缺陷的细粒度信息,从而进一步提升生成绝缘子缺陷样本的真实性和多样性。与现有方法相比,所提方法构建的绝缘子缺陷样本数据集具有逼真、多样化等特点,为提升绝缘子缺陷自动识别的准确性提供了重要的数据基础。
-
单位云南电网有限责任公司; 昆明理工大学; 自动化学院; 云南电网有限责任公司电力科学研究院