摘要
随着传统分类分析算法研究的不断深入,台区用电负荷模式的分类识别也在不断发展。提出了一种基于深度神经网络(deep neural networks, DNN)和SoftMax分类器的台区负荷分类识别方法,结合已有的典型负荷曲线特征库,实现对台区未知用户的负荷预测,为电网部门需求侧管理提供可靠的支撑。对某台区1 200个用户负荷数据进行实证分析,结果表明,提出的分类方法在算法收敛性、计算时间以及预测精度等方面具有更好的性能。
-
单位南京工程学院; 国网山东省电力公司泰安供电公司