基于深度学习的热连轧轧制力预测

作者:马威; 李维刚*; 赵云涛; 严保康
来源:钢铁研究学报, 2019, 31(09): 805-815.
DOI:10.13228/j.boyuan.issn1001-0963.20180314

摘要

轧制力预报一直是热连轧过程控制模型的核心,浅层神经网络对复杂函数的表示能力有限,而深度学习模型通过学习一种深层非线性网络结构,实现复杂函数逼近。利用深度学习框架TensorFlow,构建了一种深度前馈神经网络轧制力模型,采用BP算法计算网络损失函数的梯度,运用融入Mini-batch策略的Adam优化算法进行参数寻优,采用Early-stopping、参数惩罚和Dropout正则化策略提高模型的泛化能力。基于上述建模策略,针对宝钢1880热连轧精轧机组的大量轧制历史数据进行了建模实验,对比分析了4种不同结构的前馈网络预测精度。结果表明,相比于传统SIMS轧制力模型,深度神经网络可实现轧制力的高精度预测,针对所有机架的预测精度平均提升21.11%。