摘要
针对茶叶病害由于致病机理不同导致病斑纹理不同的特点,通过灰度共生矩阵来构造茶叶病害的纹理特征和将支持向量机应用到茶叶病害的识别方法;由于支持向量机是一个二分器,提出了投票最大策略建立SVM多分类识别算法。首先对茶叶病害的图像进行预处理以改善图像质量,然后利用灰度共生矩阵构造和提取了5种纹理特征,最后建立支持向量机多分类识别器并对茶叶病害进行识别。实验结果表明:利用灰度共生矩阵构造的纹理特征对茶叶病害的识别效果好;不同核函数的识别性能不同,径向基核函数比较适合茶叶病害的识别,识别率高达86.67%;不同样本数的识别性能不同,支持向量机在解决小样本的病害识别问题上有很好的识别能力,最低识别率达到70%,稳定性好。
-
单位铜仁学院