摘要

目前的情绪识别技术已经成功地将情绪变化与脑电信号联系起来,并在适当的刺激下从脑电信号中进行识别和分类。因为声音以及表情等信号具有一定的伪装性,而脑电信号(EEG)和情绪的变化密切相关,通过对EEG信号的分析可以更精确的反映人的情感变化。对EEG信号的研究集中于通过时域和频域的角度提取出特征信号,采用基于熵(entropy)的可分性判断进行特征选择,分别使用SVM和HMM-SVM模型两种分类方法进行情绪分类,然后对分类结果进行分析、比较。结果表明,利用HMM-SVM模型基于频域特征的分类结果最好,平均准确率为83.93%。