摘要
由于水声传播过程中同时存在声信号直达、静态或动态边界反射的现象,水声信道会呈现不同动态特性的多径,形成具有混合稀疏的结构,即多径由静态或相对缓变的平稳多径分量和快速时变的动态多径分量混合组成。对于混合稀疏信道,经典的稀疏信道估计算法未考虑混合稀疏性,将导致算法失配、性能下降;以时变稀疏集为模型,动态压缩感知(DCS)结合卡尔曼滤波(KF-CS)可提高对时变多径分量的估计精度,但KF对静态稀疏分量的估计无法充分挖掘其稀疏性。通过将混合稀疏水声信道建模为由静态和时变支撑集所组成的稀疏集,提出一种动态区分性压缩感知(DDCS)方法。该算法首先结合同步正交匹配追踪(SOMP)和正交匹配追踪(OMP)将混合稀疏多径进行区分,分解为静态分量和时变分量;然后,分别用KF-CS和同步正交匹配追踪算法估计时变和静态多径的幅度;最后,将静态分量和时变分量的估计结果整合以得到整个水声信道的冲激响应。通过海试实验把所提DDCS算法与经典信道估计算法、压缩感知算法和DCS算法进行了比较,验证了所提算法的有效性。结果表明,对混合稀疏水声信道进行区分性稀疏估计可改善信道估计性能,进而可通过信道估计均衡器提升水声通信质量。
- 单位