摘要
传统的网络安全态势预测方法依赖于历史态势值的准确性,并且各种网络安全因素之间存在相关性和重要程度差异性。针对以上问题,提出一种基于注意力机制的循环门控单元(recurrent gate unit,GRU)编码预测方法,该方法利用GRU神经网络挖掘网络安全态势数据之间的时间相关性;引入注意力机制计算安全指标的分配权重并将其编码为网络安全态势值;利用改进的粒子群优化(particle swarm optimization,PSO)算法进行超参数寻优,以加速GRU神经网络的训练。仿真分析表明,所提方法具有更快的收敛速度和较低的复杂度,并且在不同的预测时长下具有较小的均方误差和平均绝对误差。
-
单位重庆邮电大学; 通信与信息工程学院