摘要

基于模糊聚类思想,提出了一种神经网络集成方法.由训练数据的模糊聚类结果,把训练数据划分成相交子集,基于各子集生成集成的个体神经网络.由于各子集所包含的数据和数据的类别各不相同,因而个体神经网络性能和结构存在差异.子集个数确定集成中个体神经网络个数.另外,基于隶属度函数计算公式,提出了个体神经网络输出结论结合方法.理论分析和实验结果表明,此方法对模式分类能取得较好的效果.