为了解决文本情感分析的代价不平衡及静态决策中分类代价偏高的问题,文中考虑动态决策过程中产生的误分类代价和学习代价,构建基于序贯三支决策的代价敏感文本情感分析方法.首先,为了构建多粒度动态决策环境,提出针对文本数据的粒化模型.然后,引入序贯三支决策模型,构建动态文本分析框架.最后,利用真实文本评论数据集验证文中方法的有效性.实验表明文中方法在提高分类质量的同时,明显降低整体的决策代价.