摘要
作为数字媒体网络视频通信的主要方式,VBR MPEG视频流量的预测能力是直接关系缓冲区设计、动态带宽分配及拥塞控制等提高网络服务质量的关键因素.因此针对MPEG视频流的复杂特性,充分利用人工智能方法的优势,提出并建立了基于模糊神经网络的智能集成VBR MPEG视频流量预测模型.采用模糊预测模型提高预测精度,利用神经网络解决预测的实时性问题.实验结果表明,与标准AR预测模型相比,该模型预测的准确度和可靠性显著提高,且算法简单易于推广到其他方法中使用.
-
单位清华大学深圳研究生院; 清华大学