摘要

基于案例的决策是一种直接依据过去的历史案例对当前案例进行分类或者指标预测的方法,K-近邻方法就是一种广泛应用的基于案例的决策模型。在K-近邻方法中,历史案例上需要有标签,而在现实应用中,标签本身有一定的不确定性.文章详细地讨论了现有的基于K-近邻的决策方法忽略了样本标签不确定性这一问题,并基于Dempster-Shafer证据理论对标签不确定性进行建模以改善预测的性能,在此基础上结合边界树模型提高模型的运行效率.文中介绍了边界树算法的作用与原理,对如何结合传统边界树算法与样本标签的不确定性对边界树算法的节点转移策略以及决策过程进行了优化.文章最后对边界树算法的计算规模与准确率做了详细的实验论证.结果表明,文中提出的方法一方面考虑了标签的不确定性,另一方面提高了传统的K-近邻模型的决策效率.

全文