摘要

本发明公开了一种基于非自回归模型的含缺失值车辆轨迹序列填补修复方法,包括以下步骤:获取车辆轨迹序列数据集,对数据集进行归一化处理并将归一化后的数据集划分为训练集与测试集;构建深度神经网络,包括缺失信息衰减模块和非自回归填补网络,并使用训练集对构建好的深度神经网络进行训练以确定深度网络的各项参数;将测试集输入到深度网络中,得到填补后的测试集数据,即含缺失值车辆轨迹数据的填补结果。本发明可为车辆轨迹数据提供一种非自回归的填补框架,解决了传统的基于自回归模型的方法中存在的误差累积问题,同时也能有效地建模车辆轨迹序列的时序信息。