摘要

针对医学文本缺乏可量化数据结构,基于关键词模型的文本处理方法不适用的问题,在研究词之间潜在语义关联和关键词树结构的基础上,构造了一种基于潜在语义树的语义分析模型用于医学文本的数据挖掘。进一步地将隐含主题与潜在语义的研究相关联,设计出一种基于潜在狄利克雷分配和潜在语义树模型的文本处理方法,可针对不同类型的医学文本生成有一定可读性的自动批注。该方法形成的自动批注主观性低,其准确度和可读性均高于关键词模型的处理结果,可辅助医生进行医学文本的批注和分类,从而减轻其工作量。程序结果表明,该方法目前可应用于对医学图像所见形成诊断意见、对病人病历进行摘要形成和对病症描述给出对症处方等方面,批注的语义匹配度可...

全文