摘要

为了提高车辆目标在不同测试条件下的识别效率,降低系统的漏检率和误检率,提出了一种基于激光雷达与红外图像融合的车辆目标识别算法。该算法利用目标原点矩参量表征目标的红外特征,用匹配相似度表征目标的点云特征,再经过轴系对齐和尺度变换实现图像融合。实验采用激光雷达与红外同轴光路获取的两类数据进行图像融合,再利用目标匹配阈值进行迭代筛选,最终识别车辆目标。对比了1帧、20帧和40帧图像中具有不同属性的车辆目标识别效果,结果显示,本算法输出的目标识别区域正确适当。在1000帧图像的多种测试条件的实验中,本算法的漏检率均小于10.0%,误检率均小于5.0%,明显优于传统的距离向数据分类法和光谱分类法,验证了其具有较好的鲁棒性。

  • 单位
    长春理工大学光电信息学院