摘要

电力系统的稳定运行具有负荷平衡的强约束性,准确的电力负荷预测在保证电力系统规划与可靠、经济运行方面具有十分重要的意义,影响着电力系统的诸多决策,如经济调度、自动发电控制、安全评估、维护调度和能源商业化等。该文针对电力负荷预测的多种气象因素影响,提出一种基于Tsne降维可视化分析及飞蛾火焰优化ELM算法(MFOELM)的电力负荷预测新方法。针对影响电力负荷预测的高维气象数据,采用改进的SNE降维可视化分析方法 Tsne,解决了数据拥挤造成可视化效果不佳且数据结构易发生改变的问题,通过与Kpca、SNE降维方法的对比实验,证明了Tsne可以更好地将高维气象数据向低维空间映射,较高地保持高维空间中的数据结构并改善数据可视化效果;针对ELM负荷预测模型的局限,利用MFO在求解具有约束和未知搜索空间的复杂问题时具有的优越性对ELM优化,更好地解决了ELM权值输出不稳定,易陷入局部最小值等问题。通过对SAELM、PSOELM、MFOELM三种预测算法进行寻优实验,结果表明MFO不但具有更快的求解速度,而且提高了ELM的预测精度。通过对国际公开的美国日气象数据降维,协同负荷数据进行预测进行对比实验,证明了该文方法的有效性和优越性。该文方法在唐山实际电网负荷预测中应用,为制定合理的电网运行方式提供依据。

  • 单位
    燕山大学; 国网冀北电力有限公司唐山供电公司

全文