摘要
在微积分知识学习时,通常在证明某个问题的结论时,通过已有的条件无法直接推导所证的结论,这时可以尝试运用构造函数法,根据命题中的条件,将结论变换,从而构造出一个辅助函数,再运用有关的定理结论推导出命题的结论,从而能对命题的证明起到事半功倍的效果.构造函数法是一种重要的数学方法,其构造方法思路也是多种多样的,文章通过构造函数法在一些著名的定理,公式以及经典例题的运用,尝试找出如何构造辅助函数的几种方法,并通过这些方法在一些具体实例中的运用,归纳出构造函数法的一些思路.
-
单位安徽农业大学经济技术学院