摘要
【目的】针对传统方法利用文本特征提取或文章与合著者之间的关系信息,导致高阶特征缺失的问题,提出学术文献领域下的姓名消歧方法,用于区分拥有相同姓名的多个学者。【方法】提出一种名为论文嵌入网络(PaperEmbNet)的统一特征提取框架,为每个作者姓名构建学术异质信息网络,并融合内容信息和关系信息。在此基础上,设计一种基于注意力机制的循环神经网络聚类参数预测算法(AR4CPM),进行同名作者聚类个数的预测,并基于该参数,使用层次凝聚聚类算法实现消歧。【结果】在AMiner-AND数据集上的实验结果表明,所提方法在Macro-F1评分上相比次优模型最大提升4.75百分点,平均训练时间较对比方法短5~10 min。【局限】需在多语种环境下进一步验证。【结论】基于异质信息嵌入与RNN聚类参数预测的消歧方法,借助构建的学术异质信息网络充分捕获论文的内容和关系特征,在作者姓名消歧任务上验证了其有效性。
- 单位