摘要
海面发生大面积溢油事故时,由于太阳耀斑区的存在,海面的油膜在遥感影像上会发生明暗的变化。这对溢油的检测会产生严重的干扰。如何在海面太阳耀斑区准确地检测出溢油是目前溢油检测的难题。针对这一问题,本文利用Landsat7 ETM+多光谱影像数据,开展了基于卷积神经网络(CNN)的海面太阳耀斑区溢油检测方法研究。通过设置对照实验,对比支持向量机、最大似然、随机森林等分类方法,我们发现在相同实验条件下CNN模型的分类精度为95%~99%, Kappa系数为0.92~1,均高于其他三种分类方法,表明了CNN模型在海面太阳耀斑区溢油的检测具有更高的精度与一致性。
-
单位中国石油大学(华东); 山东科技大学; 自然资源部第一海洋研究所