摘要

城市路网交通流预测受到历史交通流和相邻路口交通流的影响,具有复杂的时空关联性。针对传统时空残差模型缺乏对交通流数据进行相关性分析、捕获微小变化而容易忽略长期时间特征等问题,提出一种基于改进时空残差卷积神经网络(CNN)的城市路网短时交通流预测模型。该模型将原始交通流数据转化成交通栅格数据,利用皮尔逊相关系数(PCC)对交通栅格数据进行相关性分析,确定相关性高的周期序列和邻近序列;同时,建立周期序列模型和邻近序列模型,并引入长短时记忆(LSTM)网络作为混合模型提取时间特征以及捕获两种序列的长期时间特征。利用成都市出租车数据集对模型进行验证,结果表明该模型预测结果优于LSTM、CNN和传统残差模型等基准模型,以均方根误差(RMSE)为评价指标时,所提模型将测试集中交通路网的平均预测精度分别提高了25.6%、13.3%和3.2%。