摘要

叶绿素含量(SPAD)是作物长势评价的重要指标,可以监测农作物的生长状况,对农业管理至关重要,因此快速、准确地估算SPAD具有重要意义。以冬小麦为研究对象,利用无人机高光谱获取了拔节期、挑旗期和开花期的影像数据,获取植被指数和红边参数,研究植被指数与红边参数估算SPAD的能力。先将植被指数与红边参数分别与不同生育期的SPAD进行相关性分析,再基于植被指数、植被指数结合红边参数,通过偏最小二乘回归(PLSR)方法估算SPAD,最后制作SPAD分布图验证模型的有效性。结果表明,(1)大部分植被指数与红边参数在3个主要生育期与SPAD相关性均达到极显著水平(0.01显著);(2)单个植被指数构建的SPAD估算模型中,LCI表现最好(R2=0.56, RMSE=2.96, NRMSE=8.14%),红边参数中Dr/Drmin表现最好(R2=0.49, RMSE=3.18, NRMSE=8.76%);(3)基于植被指数结合红边参数构建的SPAD估算模型效果最佳,优于仅基于植被指数构建的SPAD估算模型,同时,随着生育期推移,两种模型均在开花期达到最高精度,R2分别为0.73和0.78, RMSE分别为2.49和2.22, NRMSE分别为5.57%和4.95%。因此,基于植被指数结合红边参数,并使用PLSR方法可以更好地估算SPAD,可以为基于无人机遥感的SPAD监测提供一种新的方法,也可为农业管理提供参考。