摘要
微博作为国内用户规模较大的在线社交网络平台之一,面临着来自垃圾用户的困扰。垃圾用户通过微博平台发起网络攻击,污染网络环境、威胁用户隐私安全,甚至造成了经济损失,因此如何有效地检测垃圾用户是一个亟待解决的问题。目前,基于机器学习的检测方法并没有考虑时间的变化性,随着时间推移其检测性能下降。文章采用机器学习分类方法挖掘用户信息与微博信息的统计特征,基于Spark大数据平台,设计并实现了一套微博垃圾用户检测系统。该系统结合传统的离线检测与在线检测,通过在线检测解决时间的变化性问题,优化了传统离线检测的性能。文章的实验结果表明该系统离线检测部分的准确率最高可达到93.4%,在线检测部分的准确率最高可达到94.8%,均高于微博反垃圾系统的67.4%。
- 单位